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Abstract

Hidden variables are extra components added to try to banish counterintuitive
features of quantum mechanics. We start with a quantum-mechanical model
and describe various properties that can be asked of a hidden-variable model.
We present six such properties and a Venn diagram of how they are related.
With two existence theorems and three no-go theorems (EPR, Bell and Kochen–
Specker), we show which properties of empirically equivalent hidden-variable
models are possible and which are not. Formally, our treatment relies only on
classical probability models, and physical phenomena are used only to motivate
which models to choose.

PACS numbers: 03.65.Ta, 03.65.Ud, 02.50.Cw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Begun by von Neumann [35, 1932], the hidden-variable program in quantum mechanics (QM)
adds extra ‘hidden’ ingredients in order to try to banish some of the counterintuitive features of
QM. These features are: (i) the probabilistic nature of quantum behavior, (ii) the possibility of
so-called non-local effects between widely separated particles and (iii) the idea of an intrinsic
dependence between the observer of a QM system and the properties of the system itself.

Hidden-variable theories aim to remove these strange aspects of QM by building more
‘complete’ models (in the terminology of Einstein–Podolsky–Rosen [16, 1935]). The
completed models should agree with the predictions of QM, but exhibit one or more of
the desired properties of: (i) determinism, (ii) locality and (iii) independence.

Can such models actually be built? The famous ‘no-go’ theorems of QM show that there
are severe limitations to what can be done. But it is also true that certain combinations of
properties are possible.
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Figure 1. Complete Venn diagram.

Our modest goal in this paper is to provide a formal framework in which various properties
one might ask of hidden-variable models can be stated and in which various non-existence and
existence results can be organized. Almost all–if not all–of the ingredients of what we do in
this paper are well known to researchers in the area. Our contribution, we hope, is in putting
all the ingredients into one simple setting.

The setting is classical probability spaces. The question is, given a classical probability
model, whether there exists an associated hidden-variable model that is empirically equivalent
to the first model and that satisfies certain properties. These properties are motivated by
the literature on hidden variables in QM. The specific properties we consider—and the
relationships among them—can be depicted in the Venn diagram of figure 1. (We define
all the terms later.) The diagram contains 21 regions.

The main result of this paper is that we can give a complete account of these 21 regions.
For 10 of these regions (indicated with checks), it is always possible to find an equivalent
hidden-variable model with the properties in question. For the remaining 11 regions (indicated
with crosses), this may not be possible. We fill in the regions via two existence results and three
non-existence results. The latter three are the famous theorems of Einstein–Podolsky–Rosen
(EPR) [16, 1935],3 Bell [2, 1964] and Kochen–Specker [24, 1967].

It is important to understand that, formally, our paper makes no use of physical phenomena.
It is an exercise in classical probability theory alone. Of course, the probability spaces we
select for the non-existence results are inspired by the physical experiments described in EPR,
Bell and Kocher–Specker. But we hope it is conceptually clarifying to present the hidden-
variable question in a purely abstract setting—that is, to show how much follows from the
rules of probability theory alone.

Naturally, our account of hidden-variable theory is complete only relative to the properties
we consider (there are six of them). These properties are, as far as we can tell, the main
ones considered in the literature. (As we explain later, we have added one definition.) In

3 Strictly speaking, EPR did not state a non-existence theorem, but it is useful to present their argument this way.
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particular, Bell locality ([2, 1964]) is equivalent to the conjunction of outcome and parameter
independence (Jarrett [23, 1984], stated here as proposition 2.1). Kochen–Specker [24, 1967]
non-contextuality is implied by the conjunction of parameter independence and λ-
independence (proposition 2.2). But there may well be other interesting properties to put
on hidden-variable models, which would lead to an extension of figure 1.

There are, of course, many treatments of the hidden-variable question. (Prominent
examples include Belinfante [1, 1973], Gudder [21, 1988], Mermin [27, 1993], Peres [29,
1990] and van Fraassen [34, 1991].) This paper is not meant to be a comprehensive survey.
Our goal is, in a sense, the reverse. It is to start with the rules of probability theory alone and
ask—relative to the six properties we consider—what is or is not possible. For this task, we
need only EPR, Bell and Kochen–Specker. But we do mention later some other no-go results
in QM (not needed to complete figure 1).

Two comments on the particular framework we present. First, we work with a single
probability measure on a single space, where points in the space describe measurements on
particles and outcomes of those measurements. An alternative—more conventional—approach
would be to use a family of probability measures on a space describing outcomes only, with
different probability measures corresponding to different measurements4. In fact, all our
requirements are stated in terms of conditional probabilities: if such-and-such a measurement
is made, then what is the probability of a certain outcome? The distinction between the
approaches might therefore seem small—both involve families of probability measures. But it
matters. If we had started from a family of probability measures rather than a single measure,
we would not have been able to derive all the relationships between properties shown in
figure 1 without making some additional assumptions5. So, formally, our approach is more
parsimonious. Yet, it does add an ingredient at the conceptual level—namely, the existence of
a probability measure prior to conditioning on measurements. This measure may be thought
of as representing the perspective of a ‘super-observer’ who observes the experimenters as
well as the outcomes of the experiments. Does the existence of such a measure contradict
the free will of an experimenter in deciding what measurements to make? We do not think
so—because, as we said, we work only with the conditionals. Still, even if it plays a very
small role in our treatment, the idea of such a measure seems deserving of further study. We
leave this as beyond the scope of the current paper.

A second choice we make in our framework is to treat only finite probability spaces. This
involves a tradeoff. On one hand, finiteness allows us to avoid all measure-theoretic issues.
On the other hand, as an assumption on the space in which a hidden variable lives, finiteness
is undoubtedly restrictive. To be precise, the first of our two existence theorems needs only a
finite space in any case, but, under finiteness, the second can treat only rational probabilities.
(We sketch the extension of our second theorem, using an infinite space, to all probabilities.)
Of course, finiteness makes our versions of the no-go theorems weaker.

We derive figure 1 in the body of this paper. Before that, though, let us offer a comment on
its conceptual meaning in QM. The main message of the no-go theorems is that in building a
hidden-variable theory, some properties that might be viewed as desirable—at least, a priori—
have to be given up. But there is a choice of what to give up. Arguably, it is more a matter
of metaphysics than physics as to what choice to make. The point of a formal treatment—as
in figure 1—is to give a precise statement of what the options are. There is a basic three-way
tradeoff. We can have:

4 We are grateful to Shelly Goldstein and a referee who both pointed to this issue.
5 A reader preferring the more conventional approach can simply make these additional assumptions. We give details
in the following section.
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(i) Determinism. (As we will explain, this comes in a strong or a weak form.) This says
that randomness reflects only observer ignorance. Once hidden variables are introduced,
there is no residual randomness in the universe.

(ii) Parameter independence. This says that when conducting an experiment on a system of
particles, the outcome of a measurement on one of the particles does not depend on what
measurements are performed on other particles. (The intuitive appeal of this property is
that often the particles are widely separated.) This is a way of saying that the universe is
local.

(iii) λ-Independence. This says that the nature of the particles—as determined by the value
of a hidden variable—does not depend on the experiment conducted. There is, in this
sense, no dependence between the observer and the observed.

Any one of these properties is consistent with the predictions of QM. So are certain
combinations of properties, as figure 1 shows. But, however a priori reasonable they may
seem, we cannot have all three properties—or even certain pairs of properties. There is an
inherent tradeoff. This is an inescapable feature of QM.

The rest of this paper is organized as follows. Section 2 lays out the framework and
basic definitions. Section 3 presents two existence theorems on hidden-variable models.
Sections 4–6 present EPR [16, 1935], Bell [2, 1964] and Kochen–Specker [24, 1967] in our
probability-theoretic framework. Section 7 mentions some other impossibility results in QM
not covered in this paper.

2. The models and their properties

Here is the hidden-variable question in a bit more detail. Start with a model of an experiment
done in QM. Sometimes, the experiment will consist of measurements performed on several
entangled particles. Or, the experiment might involve several measurements performed on a
single particle. The model describes the set-up and outcome of the experiment and so will be
called an ‘empirical model.’ The question is whether one can find a hidden-variable model—
i.e., a model involving additional ‘hidden’ variables—which is empirically equivalent to the
first model and which has desired properties. By ‘empirically equivalent’ we mean that the
two models make the same (probabilistic) prediction about outcomes.

Formally, we consider a space

� = {a, a′, . . .} × {b, b′, . . .} × {c, c′, . . .} · · ·
× {A,A′, . . .} × {B,B ′, . . .} × {C,C ′, . . .} × · · · .

The variables A,B,C, . . . are measurements, and the variables a, b, c, . . . are associated
outcomes of measurements. There might be several particles: Ann performs a measurement
on her particle, Bob performs a measurements on his particle, . . . . Or, � might describe a case
where several measurements are performed on one particle. The definitions to come apply in
either case. We take each of the spaces in � to be finite, and suppose that � is a finite product.

Let � be a finite space in which a hidden variable λ lives6. The overall space is then

� = � × �.

Definition 2.1. An empirical model is a pair (�, q), where q is a probability measure on �.
A hidden-variable model is a pair (�, p), where p is a probability measure on �.

6 Throughout, we talk about one hidden variable. But we put no structure on the space in which the hidden variable
lives. Of course, in the infinite case, a measurable structure would be needed.
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Essentially, we employ the probability measures q and p once conditioned on one or
more measurements. Still, as we said in the introduction, we cannot quite dispense with the
unconditional q and p, and work instead with a family of probability measures indexed by
measurements (one family for q and one for p). If we did, we would lose lemmas 2.1 and
2.4—and hence certain relationships in figure 1. These relationships seem intuitively correct
to us, so we prefer a formalism in which they can be derived. With an indexed family of
measures, we would have to impose rather than derive these relationships.

The models of definition 2.1 stand alone. However, we are also interested in stating when
different models are equivalent:

Definition 2.2. An empirical model (�, q) and a hidden-variable model (�, p) are
(empirically) equivalent if for all a, b, c, . . . , A, B,C, . . . ,

q(A,B,C, . . .) > 0 if and only if p(A,B,C, . . .) > 0,

and when both are non-zero,

q(a, b, c, . . . |A,B,C, . . .) = p(a, b, c, . . . |A,B,C, . . .).

Here, we write ‘a, b, c, . . .’ as a shorthand for the event

{(a, b, c, . . .)} × {A,A′, . . .} × {B,B ′, . . .} × {C,C ′, . . .} × · · ·
in �, or the event

{(a, b, c, . . .)} × {A,A′, . . .} × {B,B ′, . . .} × {C,C ′, . . .} × · · · × �

in �, and similarly for other expressions. We will adopt this shorthand throughout.
The non-nullness condition is simply to ensure that any measurements (A,B,C, . . .)

which are possible in the empirical model are also possible in the hidden-variable model under
consideration, and vice versa. Without this condition, it would be hard to compare the two
models.

We will often calculate p(a, b, c, . . . |A,B,C, . . .), for p(A,B,C, . . .) > 0, from the
formula

p(a, b, c, . . . |A,B,C, . . .)

=
∑

{λ:p(A,B,C,...,λ)>0}
p(a, b, c, . . . |A,B,C, . . . , λ)p(λ|A,B,C, . . .).

Substituting this in definition 2.2, we see that the idea of equivalence is to reproduce a given
probability measure q on the space � by averaging under a probability measure p on an
augmented space �, where � includes a hidden variable. The measure p is then subject to
various conditions (described below).

One more basic definition:

Definition 2.3. Two hidden-variable models (�, p) and (�, p) are (empirically) equivalent
if for all a, b, c, . . . , A, B,C, . . . ,

p(A,B,C, . . .) > 0 if and only if p(A,B,C, . . .) > 0,

and when both are non-zero,

p(a, b, c, . . . |A,B,C, . . .) = p(a, b, c, . . . |A,B,C, . . .).

Now, we move on to the different properties of hidden-variable models. Figure 2 repeats
figure 1 (without the checks and crosses), as a preview of the properties and relationships we
will consider.
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Figure 2. Properties of hidden-variable models.

Definition 2.4. A hidden-variable model (�, p) satisfies single-valuedness if � is a
singleton.

This condition says that the hidden variable can take on only one value. In effect, this
condition does not allow hidden variables. We include it because EPR will be usefully
formulated this way.

Definition 2.5. A hidden-variable model (�, p) satisfies λ-independence if for all A,A′,
B, B ′, C,C ′, . . . , λ, whenever

p(A,B,C, . . .) > 0 and p(A′, B ′, C ′, . . .) > 0,

then

p(λ|A,B,C, . . .) = p(λ|A′, B ′, C ′, . . .).

(This term is from Dickson [14, 2005, p 140].) The condition says that the process
determining the value of the hidden variable is independent of which measurements are
chosen.

Remark 2.1. If a hidden-variable model satisfies single-valuedness, then it satisfies λ-
independence.

Definition 2.6. A hidden-variable model (�, p) satisfies strong determinism if, for every A, λ,
whenever p(A, λ) > 0, there is an a such that p(a|A, λ) = 1, and similarly for B, λ, b, etc.

Definition 2.7. A hidden-variable model (�, p) satisfies weak determinism if, for every
A,B,C, . . . , λ, whenever p(A,B,C, . . . , λ) > 0, there is a tuple a, b, c, . . . such that
p(a, b, c, . . . |A,B,C, . . . , λ) = 1.

Determinism is a basic condition in the literature. But we are careful to make a distinction
between a strong and weak form. We will see that various results are true for one form
but false for another. Broadly, the condition is that the hidden variable determines (almost

6
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surely) the outcomes of measurements. But, strong determinism says this holds measurement-
by-measurement, while weak determinism says this holds only once all measurements are
specified. There is a one-way implication:

Lemma 2.1. If a hidden-variable model satisfies strong determinism, then it satisfies weak
determinism.

Proof. Suppose p(A,B,C, . . . , λ) > 0. Then p(A, λ) > 0, p(B, λ) > 0, p(C, λ) > 0, . . . .

So, there are a, b, c, . . ., such that p(a|A, λ) = 1, p(b|B, λ) = 1, p(c|C, λ) = 1, . . . .

The result now follows from the following easy fact in probability theory: let
E1, . . . , En and F1, . . . , Fn be events with p

( ⋂
i Fi

)
> 0. If p(Ei |Fi) = 1 for all i, then

p
( ⋂

i Ei

∣∣⋂
i Fi

) = 1. �

Definition 2.8. A hidden-variable model (�, p) satisfies outcome independence if for all
a, b, c, . . . , A, B,C, . . . , λ, whenever p(A,B,C, . . . , b, c, . . . , λ) > 0,

p(a|A,B,C, . . . , b, c, . . . , λ) = p(a|A,B,C, . . . , λ), (2.1)

and similarly with a and b interchanged, etc.

Outcome independence is taken from Jarrett [23, 1984] and Shimony [31, 1986]. It says
that conditional on the value of the hidden variable and the measurements undertaken, the
outcome of any one measurement is (probabilistically) unaffected by the outcomes of the other
measurements.

Lemma 2.2. A hidden-variable model (�, p) satisfies outcome independence if and only if
for all a, b, c, . . . , A, B,C, . . . , λ, whenever p(A,B,C, . . . , λ) > 0,

p(a, b, c, . . . |A,B,C, . . . , λ) = p(a|A,B,C, . . . , λ) × p(b|A,B,C, . . . , λ)

×p(c|A,B,C, . . . , λ) × · · · . (2.2)

Proof. Standard; see, e.g., Chung [9, 1974, theorem 9.2.1]. �

Lemma 2.3 (Bub [7, 1997, p 69]). If a hidden-variable model satisfies weak determinism,
then it satisfies outcome independence.

Proof. Suppose p(A,B,C, . . . , λ) > 0. Then, by weak determinism, there is a tuple
a∗, b∗, c∗, . . . such that

p(a, b, c, . . . |A,B,C, . . . , λ) = χ{a=a∗} × χ{b=b∗} × χ{c=c∗} × · · · .
But then p(a|A,B,C, . . . , λ) = χ{a=a∗}, p(b|A,B,C, . . . , λ) = χ{b=b∗}, p(c|A,B,C,

. . . , λ) = χ{c=c∗}, . . . . Now use lemma 2.2. �

Definition 2.9. A hidden-variable model (�, p) satisfies parameter independence if for all
a,A,B,C, . . . , λ, whenever p(A,B,C, . . . , λ) > 0,

p(a|A,B,C, . . . , λ) = p(a|A, λ), (2.3)

and similarly for b,A,B,C, . . . , λ, etc.

Parameter independence is also from Jarrett [23, 1984] and Shimony [31, 1986]. It says
that, conditional on the value of the hidden variable, the outcome of any one measurement
depends (probabilistically) only on that measurement and not on the other measurements.

Lemma 2.4. If a hidden-variable model satisfies strong determinism, then it satisfies parameter
independence.
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Proof. Suppose p(A,B,C, . . . , λ) > 0. Then p(A, λ) > 0. So, by strong
determinism, there is an a∗ such that p(a|A, λ) = χ{a=a∗}. But p(a,A,B,C, . . . , λ|A, λ) =
p(a|A,B,C, . . . , λ) × p(A,B,C, . . . , λ|A, λ), where p(A,B,C, . . . , λ|A, λ) > 0. From
p(a∗|A, λ) = 1, p(a∗, A,B,C, . . . , λ|A, λ) = p(A,B,C, . . . , λ|A, λ). From p(a|A, λ) =
0 when a �= a∗, we get p(a,A,B,C, . . . , λ|A, λ) = 0. Thus, p(a|A,B,C, . . . , λ) = χ{a=a∗},
establishing (2.3). �

Combinations of some of these properties give the well-known properties of locality and
non-contextuality. First is locality, formulated by Bell [2, 1964]. In words, a hidden-variable
model satisfies locality if the probability of getting some tuple of outcomes factorizes under
the measurements.

Definition 2.10. A hidden-variable model (�, p) satisfies locality if for all
a, b, c, . . . , A, B,C, . . . , λ, whenever p(A,B,C, . . . , λ) > 0,

p(a, b, c, . . . |A,B,C, . . . , λ) = p(a|A, λ) × p(b|B, λ) × p(c|C, λ) × · · · . (2.4)

Proposition 2.1 (Jarrett [23, 1984, p 582]). A hidden-variable model satisfies locality if and
only if it satisfies outcome independence and parameter independence.

Proof. Assume p(A,B,C, . . . , λ) > 0, and substitute (2.3) and its counterparts into (2.2).
This yields (2.4).

Conversely, assume again p(A,B,C, . . . , λ) > 0, and sum both sides of (2.4) over
b, c, . . . . This yields (2.3). Moreover, substituting (2.3) and its counterparts into (2.4) yields
(2.2). �

Non-contextuality, due to Kochen–Specker [24, 1967], is a property of an empirical model. It
says that the probability of obtaining a particular outcome of a measurement does not depend
on the other measurements performed.

Definition 2.11. An empirical model (�, q) satisfies non-contextuality if for all
a,A,B,B ′, C,C ′, . . . , whenever q(A,B,C, . . .) > 0 and q(A,B ′, C ′, . . .) > 0,

q(a|A,B,C, . . .) = q(a|A,B ′, C ′, . . .).

Also, the corresponding conditions must hold for b,A,A′, B,C,C ′, . . ., etc.

Proposition 2.2. If a hidden-variable model (�, p) satisfies λ-independence and parameter
independence, then any equivalent empirical model (�, q) satisfies non-contextuality.

Proof. We can assume p(A,B,C, . . .) > 0 and p(A,B ′, C ′, . . .) > 0. Then

p(a|A,B,C, . . .) =
∑

{λ:p(A,B,C,...,λ)>0}
p(a|A,B,C, . . . , λ)p(λ|A,B,C, . . .)

=
∑

{λ:p(A,B,C,...,λ)>0}
p(a|A,B,C, . . . , λ)p(λ)

=
∑

{λ:p(A,B,C,...,λ)>0}
p(a|A, λ)p(λ),

where the second line uses λ-independence and the third line uses parameter independence.
Using p(A,B,C, . . .) > 0 and λ-independence again, we have p(A,B,C, . . . , λ) > 0 if and
only if p(λ) > 0. So,

p(a|A,B,C, . . .) =
∑

{λ:p(λ)>0}
p(a|A, λ)p(λ).

8
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Figure 3. Existence theorems.

A similar argument establishes

p(a|A,B ′, C ′, . . .) =
∑

{λ:p(λ)>0}
p(a|A, λ)p(λ),

so that p(a|A,B,C, . . .) = p(a|A,B ′, C ′, . . .), as required. �

3. Two existence theorems

We next prove two existence theorems for hidden-variable models which say what type of
properties can always be found:

(E1) Given any empirical model, there is an equivalent hidden-variable model which satisfies
strong determinism.

(E2) Given any empirical model, there is an equivalent hidden-variable model which satisfies
weak determinism and λ-independence.

That is, each of these sets of conditions on a hidden-variable theory can always be satisfied.
They cannot be impeded by any no-go theorems. Figure 3 repeats part of figure 1, putting a
check in a region where there is always an equivalent hidden-variable model with the properties
that hold in that region. The checks are followed by E1 and/or E2 which say which existence
theorem pertains to that region.

(The region for single-valuedness alone also has a check. The existence of an equivalent
hidden-variable model satisfying single-valuedness alone is immediate—it is essentially just
the given empirical model. See remark 3.1 for a statement.)

Here are the two existence theorems. Similar methods to those in the first proof can be
found in Fine [17, 1982, p 292]. The idea of the second theorem is in Teufel–Berndl–Dürr–
Goldstein–Zanghı̀ [33, 1997, p 1219] (see also Werner and Wolf [37, 2001, p 7]). But we have
not found exact statements of the two theorems in the literature.

9
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Figure 4. Construction for proof E1.

Theorem 3.1. Given an empirical model (�, q), there is an equivalent hidden-variable model
(�, p) which satisfies strong determinism.

The proof is basically a mathematical trick. We simply take the hidden variable to
be all the information possible. This means, in particular, that the hidden variable would
have to ‘know’ the probabilities for different measurements and outcomes. With this huge
hidden variable, we can build up the probability measure p from the given measure q. This
construction is physically unsatisfying, of course—but not ruled out by the general concept of
a hidden variable. It is also rather obvious. Bell [3, 1971] wrote: ‘If no restrictions whatever
are imposed on the hidden variables, or on the dispersion-free states, it is trivially clear that
such schemes can be found to account for any experimental results whatever’ (reprinted in
[4, p 33]). Still, we give a proof—which, in particular, makes clear that even strong
determinism is achieved. (This will not be possible in the next existence result.)

Proof. We give the proof for the case that � is a 4-way product, but the extension to a general
(finite) product will be clear. Set

� = {a, a′, . . .} × {b, b′, . . .} × {A,A′, . . .} × {B,B ′, . . .},
and define p in stages, as follows. (Figure 4 shows the construction.) For any pair A,B, set

p(A,B) = q(A,B). (3.1)

For any pair A,B, and λ = (ã, b̃, Ã, B̃), set

p(λ|A,B) =
{
q(ã, b̃|A,B) if Ã = A and B̃ = B,
0 otherwise.

(3.2)

For pairs a, b and A,B, and λ = (ã, b̃, Ã, B̃), set

p(a, b|A,B, λ) =
{

1 if ã = a, b̃ = b, Ã = A, B̃ = B,
0 otherwise.

(3.3)

This defines a measure p on � using

p(a, b,A,B, λ) = p(a, b|A,B, λ) × p(λ|A,B) × p(A,B).

10
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(Note that p(·, ·|A,B, λ) is not a measure if A �= Ã or B �= B̃. But then p(λ|A,B) = 0, so
there is no difficulty.)

From (3.1), p(A,B) > 0 if and only if q(A,B) > 0. If both are positive, then from
figure 4,

p(a, b|A,B) = 1 × q(a, b|A,B),

so that equivalence is satisfied.
It remains to verify that (�, p) satisfies strong determinism. So, suppose p(A, λ) > 0.

Writing λ = (ã, b̃, Ã, B̃), we therefore assume A = Ã. Using (3.1)–(3.3),

p(a,A, λ)= p(a, Ã, λ)=
∑
b′,B ′

p(a, b′, Ã, B ′, λ)= p(a, b̃, Ã, B̃, λ)= q(a, b̃, Ã, B̃)× χ{a=ã},

p(A, λ) = p(Ã, λ) =
∑

a′,b′,B ′
p(a′, b′, Ã, B ′, λ) = p(ã, b̃, Ã, B̃, λ) = q(ã, b̃, Ã, B̃),

so that

p(a|A, λ) = χ{a=ã},

which is strong determinism. �

Corollary 3.1. Given a hidden-variable model (�, p), there is an equivalent hidden-variable
model (�, p) which satisfies strong determinism.

Proof. Start with (�, p), and (partially) define an equivalent empirical model (�, q) by

q(a, b|A,B) =
∑

{λ:p(A,B,λ)>0}
p(a, b|A,B, λ)p(λ|A,B),

for p(A,B) > 0. (There is no difficulty in completing the definition of q.)
By theorem 3.1, there is a hidden-variable model (�, p) which is equivalent to (�, q)

and which satisfies strong determinism. But (�, p) is also equivalent to (�, p). �

We state the next existence result for the case of rational probabilities, to enable us to prove it
with a finite set �. After the proof, we sketch the extension to all probabilities.

Theorem 3.2. Given an empirical model (�, q) with rational probabilities, there is
an equivalent hidden-variable model (�, p) which satisfies weak determinism and λ-
independence.

The idea of the proof is to have the hidden variable live on the (discretized) unit interval,
and then to split up the interval according to relevant probabilities.

Proof. We give a proof for the case that � is a 4-way product, but the argument clearly
extends. Let p be arbitrary (but with full support) on {A,A′, . . .} × {B,B ′, . . .}. Fix a pair of
settings (Ai, Bj ) with q(Ai, Bj ) > 0. For a pair of outcomes (ak, bl), write the conditional
probability as

q(ak, bl |Ai, Bj ) = rijkl

sijkl

for some integers rijkl � 0 and sijkl > 0.
Let � have N points, where

N =
∏

i,j,k,l

sijkl .

We let p be uniform on N, and then form the product on {A,A′, . . .}× {B,B ′, . . .}×�. Thus,
λ-independence is satisfied.

11
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Figure 5. Construction for proof of extension of E2.

Still fixing (Ai, Bj ), we ‘assign’ to (ak, bl) the number of points

rijkl ×
∏
k′ �=k
l′ �=l

sijk′l′ ×
∏
i ′ �=i
j ′ �=j

∏
k,l

si ′j ′kl .

Formally, we mean that for each of these points,

p(ak, bl |Ai, Bj , λ) = 1.

Thus, weak determinism is satisfied. Note that, again for fixed (Ai, Bj ), the probability
of choosing one of these points is

rijkl × ∏
k′ �=k
l′ �=l

sijk′l′ ×
∏

i ′ �=i
j ′ �=j

∏
k,l si ′j ′kl

∏
i,j,k,l sijkl

= rijkl

sijkl

,

and so

p(ak, bl |Ai, Bj ) = rijkl

sijkl

= q(ak, bl |Ai, Bj ),

establishing equivalence. �

Corollary 3.2. Given a hidden-variable model (�, p) with rational probabilities, there
is an equivalent hidden-variable model (�, p) which satisfies weak determinism and λ-
independence.

Proof. As for corollary 3.1, using theorem 3.2 in place of theorem 3.1. �

We could handle irrational probabilities in theorem 3.2, if we allowed an infinite �. Set
� = [0, 1] and again take p to be uniform on �. Fix again a pair of settings (A,B) with
q(A,B) > 0. Write the support of q(·, ·|A,B) as {(a1, b1), . . . , (an, bn)}. Partition � as
in figure 5. On element �k of the partition, we set p(ak, bk|A,B, λ) = 1. Conceptually,
λ-independence and weak determinism follow as before. (But to make this formal, we would
need to extend these definitions to infinite �.)

Finally in this section, we record the obvious fact:

Remark 3.1. Given an empirical model (�, q), there is an equivalent hidden-variable model
(�, p) which satisfies single-valuedness.

Proof. Let � = {λ}, and, for a, b,A,B, let p(a, b,A,B, λ) = q(a, b,A,B). �

4. EPR

We have seen that certain types of hidden-variable model are always possible. Next come the
no-go theorems, expressed in our framework. These show that no other type of hidden-variable
model (among those covered by our six conditions) is necessarily possible.

12
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Figure 6. Existence theorems and EPR.

Here is the first no-go theorem, due to EPR [16, 1935], expressed in our framework. (Our
formulation is very similar to that in Norsen [28, 2004].) Figure 6 adds crosses to figure 3, in
accordance with the EPR result.

Note that, as with our other statements, EPR as given here is a simple result in probability
theory. But the notation we use in the empirical model is meant to reflect the underlying
physical set-up which was of interest to EPR. (More precisely, it reflects Bohm’s [5, 1951]
reformulation of EPR.) In the physical set-up, there are two entangled particles that are anti-
correlated. If Ann measures positive spin, then Bob measures negative spin, and vice versa.
There is a 50-50 chance of each pair of outcomes.

Theorem 4.1 (EPR [16, 1935]). There is an empirical model (�, q) for which there is
no equivalent hidden-variable model (�, p) which satisfies single-valuedness and outcome
independence.

Proof. We let

� = {+a,−a} × {+b,−b} × {A} × {B},
and define q as in figure 7

+b −b

+a 0 1
2

−a
1
2 0

q(·, ·|A,B)

Figure 7. Probabilities in EPR.
13



J. Phys. A: Math. Theor. 41 (2008) 425302 A Brandenburger and N Yanofsky

Now suppose, contra hypothesis, there is an equivalent hidden-variable model (�, p)

satisfying single-valuedness and outcome independence. Let � = {λ}. Then we must have

p(+a,−b|A,B, λ) = p(−a, +b|A,B, λ) = 1
2 ,

from which

p(+a|A,B, λ) = p(+a, +b|A,B, λ) + p(+a,−b|A,B, λ) = 0 + 1
2 ,

and

p(+a|A,B,−b, λ) = p(+a,−b|A,B, λ)

p(−b|A,B, λ)
=

1
2
1
2

= 1,

contradicting outcome independence. �

The conditions of EPR are tight. By remark 3.1, we cannot drop outcome independence. By
theorem 3.1 or 3.2, we cannot drop single-valuedness. Here is a specific construction—for the
EPR empirical model—of an equivalent hidden-variable model satisfying strong determinism
(so, certainly outcome independence) and even λ-independence. Let � = {λ1, λ2}, and set
p(λ1) = p(λ2) = 1

2 and

p(+a,−b|A,B, λ1) = 1, p(−a, +b|A,B, λ2) = 1.

Using p(A,B) = 1, we see that the stated conditions hold.
At the level presented here, the EPR argument does not need any quantum effects. It could

be realized entirely classically. Von Neumann [36, 1936] gave a nice example of classical
action at a distance:

Let S1 and S2 be two boxes. One knows that 1000 000 years ago either a white
ball had been put into each or a black ball had been placed into each but one does
not know which color the balls were. Subsequently one of the boxes (S1) was
buried on Earth, the other (S2) on Sirius . . . . Now one digs S1 on Earth out, opens
it and sees: the ball is white. This action on Earth changes instantaneously the S2

statistic on Sirius . . . .

In the QM context, EPR’s conclusion was that the theory of QM needed to be ‘completed.’
This leads to the question of whether a construction like the one we just gave is always possible.
This then leads to Bell’s Theorem.

5. Bell

Bell’s Theorem adds crosses to figure 6, as in figure 8.
Once more, our formulation is in probability terms alone. In the Bell experiment, Ann

(respectively Bob) can make measurements of spin on her (respectively his) entangled particle
in three directions. For each measurement, the only possible outcome is positive or negative
spin. If the measurements are made in the same direction, the results will be anti-correlated
(figure 9). Figure 10 gives the probabilities of the different outcomes of the measurements,
when these are made in different directions. The probabilities in figure 10 are essentially
quantum-mechanical.

Theorem 5.1 (Bell [2, 1964]). There is an empirical model (�, q) for which there is
no equivalent hidden-variable model (�, p) which satisfies λ-independence, parameter
independence and outcome Independence.

14
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Figure 8. Existence theorems, EPR and Bell’s Theorem.

+b −b

+a 0 1
2

−a
1
2 0

q(·, ·|Ai ,Bi)

Figure 9. Probabilities in Bell’s Theorem.

Another phrasing (using proposition 2.1): there is no equivalent hidden-variable model
which satisfies λ-independence and locality.

Proof. We let

� = {+a,−a} × {+b,−b} × {A1, A2, A3} × {B1, B2, B3},
and define q as in figures 9 and 10, with q(Ai, Bj ) = 1

9 for all i, j .
Now suppose, contra hypothesis, there is an equivalent hidden-variable model (�, p)

satisfying λ-independence, parameter independence and outcome independence.
Fix an i. By assumption, p(Ai, Bi) > 0, since q(Ai, Bi) > 0. Using figure 9, we have

0 = q(+a, +b|Ai, Bi) =
∑

{λ:p(Ai ,Bi ,λ)>0}
p(+a, +b|Ai, Bi, λ)p(λ|Ai, Bi)

=
∑

{λ:p(Ai ,Bi ,λ)>0}
p(+a, +b|Ai, Bi, λ)p(λ)

=
∑

{λ:p(Ai ,Bi ,λ)>0}
p(+a|Ai, λ)p(+b|Bi, λ)p(λ),

15
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+b −b

+a
3
8

1
8

−a
1
8

3
8

q(·, ·|Ai ,Bj ) for j �= i

Figure 10. Probabilities in Bell’s Theorem (continued).

where the second line uses λ-independence and the third line uses parameter independence,
outcome Independence and proposition 2.1. Using p(Ai, Bi) > 0 and λ-Independence again,
we have p(Ai, Bi, λ) > 0 if and only if p(λ) > 0. Let M = {λ : p(λ) > 0}. Then,

p(+a|Ai, λ) × p(+b|Bi, λ) = 0 (5.1)

whenever λ ∈ M .
A similar argument using q(−a,−b|Ai, Bi) = 0 establishes

p(−a|Ai, λ) × p(−b|Bi, λ) = 0 (5.2)

whenever λ ∈ M .
Using (5.1) and (5.2), we see that for each i, there are disjoint sets Ki, Li ⊆ �, with

Ki ∪ Li = M , such that

p(+a|Ai, λ) = 1 and p(−b|Bi, λ) = 1 when λ ∈ Ki,

p(−a|Bi, λ) = 1 and p(+b|Bi, λ) = 1 when λ ∈ Li.
(5.3)

Similar to above, observe that

q(+a, +b|Ai, Bj ) =
∑
M

p(+a|Ai, λ)p(+b|Bj , λ)p(λ). (5.4)

Using (5.3) (for i and j ) in (5.4) we get

q(+a, +b|Ai, Bj ) = p(Ki ∩ Lj).

A parallel argument yields

q(−a,−b|Ai, Bj ) = p(Li ∩ Kj).

Now use figure 10 to get

p(Ki ∩ Lj) + p(Li ∩ Kj) = 3
4 (5.5)

whenever i �= j .
Refer to figure 11 (similar to figures in d’Espagnat [13, 1979]), and let

K1 = 1 ∪ 4 ∪ 5 ∪ 8 ,

L1 = 2 ∪ 3 ∪ 6 ∪ 7 ,

K2 = 1 ∪ 2 ∪ 5 ∪ 6 ,

L2 = 3 ∪ 4 ∪ 7 ∪ 8 ,

K3 = 1 ∪ 2 ∪ 3 ∪ 4 ,

L3 = 5 ∪ 6 ∪ 7 ∪ 8 .

16



J. Phys. A: Math. Theor. 41 (2008) 425302 A Brandenburger and N Yanofsky

Figure 11. Construction for proof of Bell’s Theorem.

Now (5.5) for (i, j) = (1, 2), (2, 3) and (3, 1) respectively, yields

p(K1 ∩ L2) + p(L1 ∩ K2) = 3
4 ,

p(K2 ∩ L3) + p(L2 ∩ K3) = 3
4 ,

p(K3 ∩ L1) + p(L3 ∩ K1) = 3
4 ,

or

p( 4 ) + p( 8 ) + p( 2 ) + p( 6 ) = 3
4 , (5.6)

p( 5 ) + p( 6 ) + p( 3 ) + p( 4 ) = 3
4 , (5.7)

p( 2 ) + p( 3 ) + p( 5 ) + p( 8 ) = 3
4 . (5.8)

Adding (5.6)–(5.8) gives

2 × (p( 2 ) + p( 3 ) + p( 4 ) + p( 5 ) + p( 6 ) + p( 8 )) = 9
4 ,

or

p( 2 ) + p( 3 ) + p( 4 ) + p( 5 ) + p( 6 + p( 8 ) = 9
8 ,

which is impossible. �
Can we drop any of the conditions of Bell’s Theorem? By theorem 3.1, we cannot drop
λ-independence. By theorem 3.2, we cannot drop parameter independence.

For the Bell empirical model, we also cannot drop outcome Independence. To see this,
let � = {λ}. Then λ-independence is satisfied. Define p on � × {λ} from q on �, as in
remark 3.1. We then have

p(+a|Ai, Bi, λ) = q(+a|Ai, Bi) = 1
2 = q(+a|Ai, Bj ) = p(+a|Ai, Bj , λ),

p(+b|Ai, Bi, λ) = q(+b|Ai, Bi) = 1
2 = q(+b|Aj, Bi) = p(+b|Aj , Bi, λ),

so that parameter independence is satisfied. Of course, outcome independence fails, as it must.
For example

p(+a|−b, Ai, Bi, λ) = 1 �= 1
2 = p(+a|Ai, Bi, λ).

By contrast, the Kochen–Specker theorem produces an impossibility even without
outcome independence.

17
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Table 1.

A E1 E1 E8 E8 E2 E9 E16 E16 E17

B E2 E5 E9 E11 E5 E11 E17 E18 E18

C E3 E6 E3 E7 E13 E14 E4 E6 E13

D E4 E7 E10 E12 E14 E15 E10 E12 E15

6. Kochen–Specker

The Kochen–Specker [24, 1967] no-go result adds crosses to figure 8, to give a complete
picture as in figure 1.

At the physical level, the Kochen–Specker experiment differs from those in the past two
sections in considering measurements on only one particle. There are many presentations of
Kochen–Specker, of course. We follow Cabello, Estebaranz and Garcı̀a–Alcaine [8, 1996], a
simple treatment which results in the 4×9 array of table 1 (also presented in Held [22, 2000]).
For various tuples of four orthogonal directions in 4-space (from a total of 18 directions), we
ask whether or not the particle has spin in each of these directions. In each case, the answer
will be that we get three directions without spin and only one direction with spin.

To state Kochen–Specker in our probabilistic framework, we will need to adapt the concept
of exchangeability from probability theory (de Finetti [11, 1937], [12, 1972]). To give our
definition, we consider the special case where the spaces of possible measurements are all the
same, as are the spaces of possible outcomes:

{A, . . .} = {B, . . .} = · · · = {X1, X2, . . . , Xm},
{a, . . .} = {b, . . .} = · · · = {x1, x2, . . . , xn},

for integers m, n. We will consider a permutation map π :

(A,B, . . .) 	→ (π(A), π(B), . . .),

(a, b, . . .) 	→ (π(a), π(b), . . .).

Note that we use π twice (despite the different domains), because we want to consider the
same permutation on the two sequences.

Definition 6.1. An empirical model (�, q) satisfies exchangeability if for any indices
i1, i2, . . . ∈ {1, 2, . . . , m} and j1, j2, . . . ∈ {1, 2, . . . , n},
q(A = Xi1 , B = Xi2 , . . .) > 0 if and only if q(π(A) = Xi1 , π(B) = Xi2 , . . .) > 0,

for any permutation π , and when both are non-zero,

q(a = xj1 , b = xj2 , . . . |A = Xi1 , B = Xi2 , . . .)

= q(π(a) = xj1 , π(b) = xj2 , . . . |π(A) = Xi1 , π(B) = Xi2 , . . .).

In words, the requirement is that if we swap any number of measurements, then, as long
as we swap the outcomes in the same way, the overall probability is unchanged. Thus, let
q be the probability that Ann gets the outcome xj1 and Bob gets the outcome xj2 , if Ann
performs measurement Xi1 on her particle and Bob performs measurement Xi2 on his particle.
Let q ′ be the probability that Ann gets the outcome xj2 and Bob gets the outcome xj1 , if Ann
performs measurement Xi2 on her particle and Bob performs measurement Xi1 on his particle.
Exchangeability says that q ′ = q. Likewise, for several measurements on a single particle.
This is similar to exchangeability à la de Finetti, though with a conditioning component.
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Exchangeability might come from physical arguments. For example, the Bell model
(figures 9 and 10) satisfies exchangeability. (This reflects the underlying physical fact that
only the angle between the two measurements matters.)

Theorem 6.1 (Kochen–Specker [24, 1967]). There is an empirical model (�, q) for which
there is no equivalent hidden-variable model that satisfies λ-independence and parameter
independence.

Kochen–Specker demonstrated the existence of a QM model that fails non-contextuality:
whether or not their particle has spin in a certain direction is dependent on which other
directions are also measured. The property of spin for such a particle does not stand alone.
As the proof makes clear, theorem 6.1 is really a corollary to their result.

Proof. Consider an empirical model where

{A, . . .} = {B, . . .} = {C, . . .} = {D, . . .} = {E1, E2, . . . , E18},
{a, . . .} = {b, . . .} = {c, . . .} = {d, . . .} = {0, 1}.

Exchangeability is assumed to hold, and q assigns positive probability to each of the following
nine tuples of measurement settings in table 1.

Finally, for any column, the empirical model has the property that precisely one of the
following holds:

q
(
1, 0, 0, 0

∣∣Ei1 , Ei2 , Ei3 , Ei4

) = 1, (6.1)

q
(
0, 1, 0, 0

∣∣Ei1 , Ei2 , Ei3 , Ei4

) = 1, (6.2)

q
(
0, 0, 1, 0

∣∣Ei1 , Ei2 , Ei3 , Ei4

) = 1, (6.3)

q
(
0, 0, 0, 1

∣∣Ei1 , Ei2 , Ei3 , Ei4

) = 1. (6.4)

Now suppose, contra hypothesis, that there is an equivalent hidden-variable model
satisfying λ-independence and parameter independence. By proposition 2.2, the above
empirical model then satisfies non-contextuality.

Next take, say, the first column. If

q(0, 1, 0, 0|E1, E2, E3, E4) = 1, (6.5)

then certainly

q(b = 1|E1, E2, E3, E4) = 1.

Since (E2, E5, E13, E14) is non-null, so is (E5, E2, E13, E14), by exchangeability. Using
non-contextuality, we therefore have

q(b = 1|E5, E2, E13, E14) = 1,

from which, by exchangeability again,

q(a = 1|E2, E5, E13, E14) = 1.

Now use (6.1)–(6.4) to get

q(1, 0, 0, 0|E2, E5, E13, E14) = 1, (6.6)

which tells us about the fifth column.
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We therefore get a coloring problem: we try to color precisely one entry in each column—
corresponding to the measurement that yields a 1. For example, suppose we color the entry
E2 in the first column—corresponding to (6.5). Then (6.6) tells us that we must color the
entry E2 in the fifth column. However, this is impossible. Each Ei appears an even number
of times in table 1, and there is an odd number of columns. Thus, the table cannot be colored.

�

7. Other no-go theorems

There are many important papers on the no-go question not touched upon here. These
include Fine [17, 1982], [18, 1982], Greenberger, Horne, and Zeilinger [20, 1989], Malley
and Fine [25, 2005], Mermin [26, 1990], [27, 1993], Peres [29, 1990], [30, 1991], and Szabo
and Fine [32, 2002]. Again, our purpose is not to survey the literature. Rather, it is to give
a complete picture of figure 1 and all its 21 regions. As figure 1 shows, just the three basic
no-go theorems are needed for the six properties that we present.

The absence of Gleason’s theorem ([19, 1957]) from our paper is a consequence of our
choice not to impose any structure on our spaces (refer back to footnote 6). In particular, we
do not work in Hilbert space. Of course, Gleason’s theorem immediately implies the existence
of the Kochen–Specker QM model (which we used in our theorem 6.1).

The recent no-go theorem of Conway and Kochen [10, 2006] generalizes Kochen–Specker
by relaxing parameter independence. Consider a two-particle system. The requirement is that,
conditional on the value of the hidden variable, the outcome of any particular measurement
Ann makes on her particle may depend (probabilistically) on the other measurements she
makes but not on the measurements Bob makes on his particle. We could accommodate this
result by adding a seventh property—a generalized parameter independence—to our six, but
refrain from pursuing this extension here.

Finally, we note the connection to Bohmian mechanics (Bohm [6, 1952]). Dürr–
Goldstein–Zanghı̀ [15, 2004, p 993] explain: ‘In Bohmian mechanics the result obtained at
one place at any given time will in fact depend upon the choice of measurement simultaneously
performed at the other place.’ Indeed, theorem 3.2 says that provided one is prepared to give
up parameter independence, one can reproduce any empirical model—under λ-independence
and weak determinism. Theorem 3.1 says that if one is prepared to give up λ-independence,
one can get even strong determinism. In a sense, then, these results ‘predict’ the possibility of
Bohmian mechanics—though not its specific content, of course.
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